
NASA Contractor Report 194901

ICASE Report No. 94-23

IC S
A PHASE EQUATION APPROACH TO
BOUNDARY LAYER INSTABILITY THEORY:

TOLLMIEN SCHLICHTING WAVES

Philip Hall (NASA-CR-194901) A PHASE EQUATION

APPROACH TO BOUNDARY LAYER
INSTABILITY THEORY: TOLLMIEN

SCHLICHTING WAVES Final Report

(ICASE) 39 p

G3/34

N94-34394

Uncl as

0012095

Contract NAS 1- 19480

April 1994

Institute for Computer Appfications in Science and Enginee_

NASA Langley Research Center ............

Hampton, VA 23681-0001

Operated by Universities Space Research Association



_ i. __



ICASE Fluid Mechanics

Due to increasing research being conducted at ICASE in the field of fluid mechanics,

future ICASE reports in this area of research will be printed with a green cover. Applied

and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.



i
I
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Philip Hall 1

Department of Mathematics
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Abstract

Our concern is with the evolution of large amplitude Tollmien-Schlichting waves in

boundary layer flows. In fact the disturbances we consider are of a comparable size to

the unperturbed state. We shall describe two-dimensional disturbances which are locally

periodic in time and space. This is achieved using a phase equation approach of the type

discussed by Howard and Kopell (1977) in the context of reaction-diffusion equations. We

shall consider both large and O(1) Reynolds numbers flows though, in order to keep our

asymptotics respectable, our finite Reynolds number calculation will be carried out for the

asymptotic suction flow. Our large Reynolds number analysis, though carried out for Bla-

sius flow, is valid for any steady two-dimensional boundary layer. In both cases the phase

equation approach shows that the wavenumber and frequency will develop shocks or other

discontinuities as the disturbance evolves. As a special case we consider the evolution of con-

stant frequency/wavenumber disturbances and show that their modulational instability is

controlled by Burgers equation at finite Reynolds number and l_y a new integro-differential

evolution equation at large Reynolds numbers. For the large Reynolds number case the

evolution equation points to the development of a spatially localized singularity at a finite

time. The three-dimensional generalizations of the evolution equations is also given for the

case of weak spanwise modulations.
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1 Introduction

Most boundary layers of practical importance are susceptible to a variety of instability mech-

anisms which lead to the onset of transition to turbulence. Usually more than one nlechanism

will be operational in any particular case, and a full understanding of how transition occurs will

require a detailed understanding of the nonlinear interaction of the different modes of insta-

bility. Here we will concern ourselves with the strongly nonlinear evolution of a slowly-varying

Tollmien-Schlichting wave system. In the first instance we consider lower branch Tolhnien-

Schlichting waves which are known to be governed by triple-deck theory e.g. Smith (1979a,b),

Hall and Smith (1984), Smith and Burggraf (1985). Then we shall consider the corresponding

problem at finite Reynolds numbers. It is worth pointing out that the approach we use here

can be used to describe other modes of instability and is in fact based on ideas given some

years ago by Howard and Kopell (1977) who were interested in the evolution of nonlinear wave

systems in reaction-diffusion equations.

The first application of trlple-deck theory to describe the linear and nonlinear growth

of lower branch Tollmien-Schlichting waves is apparently due to Smith (1979a,b) though

Lin (1966) clearly recognized the appropriate large Reynolds number scalings for Tolhnien-

Schlichting waves long before triple-deck theory was invented. The investigation of Smith

(1979a) showed how nonparallel effects could be taken care of in a self-consistent manner us-

ing asymptotic methods. Previously Gaster (1974) used a successive approximation procedure

to tackle the same kind of problem. Subsequently Smith (1979b) showed how the nonlinear

growth of Tolhnien-Schlichting waves could be taken care of using triple-deck theory. How-

ever the results of Smith (1979b), and the subsequent extension to three-dimensional modes

by Hall and Smith (1984), are confined to the weakly nonlinear stage where an ordinary dif-

ferential amplitude equation describes the initial stage of the bifurcation from a disturbance

free state. Some years later Smith and Burggraf (1985) discussed the high frequency limit of

the lower branch triple-deck problem and uncovered a sequence of nonlinear structures gov-

erning a sequence of successively more nonlinear wave interactions. Subsequently Smith and

Stewart (1987) investigated the interaction of three-dimensional modes at high frequencies

and obtained excellent agreement with the experiments of Kachanov and Levechenko (1984),

though Khokhlov (1994) in a recent theoretical investigation argues that the work of Smith

and Stewart (1987)needs some modification.

In the first instance we shall restrict our attention to two-dimensional waves and determine

how the wavenumber and frequency of a wavesystem may be found as it moves through a

growing boundary layer. This problem has not yet been addressed. Intuitively one would

expect that a small amplitude wave would evolve from its weakly nonlinear form into a larger

amplitude state until it is described by the Snlith-Burggraf structure at sufficiently large values



of the local frequencyof thedisturbance.Our calculationsshowthat this is not the caseand

indeedshowthat at highfrequencieslocallyperiodicformsof the modesfoundby Smithand

Burggrafprobablydonot exist. Certainly it wouldappearthat they do not connectto the
weaklynonlinearstatediscussedby Smith(1979b).

The asymptoticstructureweuseis basedon the so-called'phase-equation'approachused
0

so successfillly to describe large amplitude Bdnard convection in large containers by, amongst

others, Kramer, Ben Jacob, Brand and Cross (1982), Cross and Newell (1984), Newell, Passot

and Lega (1993). Using this approach it has been possible to describe the experimentally

observed slowly varying planform of Benard convection. Thus, for example, the dislocation

of convection rolls is now reasonably well understood using the phase equation approach.

Interestingly enough it turns out that the essential ideas of this approach had been elucidated

in the context of traveling wave instabilities several years earlier, see Howard and Kopell (1977)

and indeed the method can be found in Whitham (1974). The evolution of traveling waves in

a Blasius boundary layers is the subject of the first part of this work and not surprisingly the

analysis to be used has sinfilarities with that of the latter authors.

The essential idea behind the phase equation approach may be explained in the following

manner. Suppose there exists seine flow which is unstable to a traveling wave disturbance of

wavenumber a and frequency ft. For a fully nonlinear disturbance the frequency 9t will be.

a filnction of c_ which itself can be thought of as a function of A, a measure of the size of

disturbance. If we let A tend to zero then, for small A, the quantities c_ and fi will differ from

their linear neutral values by O(A) 2 so that finite amplitude disturbances begin as supercritical

bifurcations from the basic state. For 0(1) values of A the quantities c_ and _ are accessible

only hy numerical means, see for example Herbert (1977) for details of the computation of _

and 9t for Tolhnien-Schlichting waves in plane Poisseuille flow or Conlisk, Burggraf and Smith

(1987) for a similar calculation for Tolhnien-Schlichting waves in Blasius boundary layers at

large Reynolds numbers. In some cases the frequency of the waves is zero and, the wavenumber

of the disturbances may be sensibly held fixed when the control parameter or disturbance size

is varied, see for example Hall (1988) for a discussion of the fully nonlinear GSrtler problem in

a growing boundary layer. For a traveling wave disturbance in a growing boundary layer we

expect that the wavenmnber and frequency of the disturbance should change as it propagates

into locally less or more unstable parts of the flow. The phase equation approach provides

a rational framework for following such an evolution. If the wave has local frequency and

wavenumber which are 0(1) with respect to the variables t and x we introduce slowly varying

variables T and X by writing

T= 6t, X = _x,

and we now think of a and fl as being functions of X and T. Thus we may introduce the



phasefunctionO(X, T) defined by 0 = O(X, r)/5 with

= Ox,_t = -OT

and as a consequence the wave system evolves such that

+ fix = o. (1.1)

Partial derivatives with respect to x and t must then be replaced using

0 0 O 0 0 0

ox + ot -rt-50 +

and if we then equate terms of 0(5) ° we recover the unmodulated equations of motion with c_

and _ playing the role of wavennmber and frequency. Thus the leading order problem using

the phase equation approach is simply the unmodulated case with a and ft being flmctionally

related in order that the system, with a given disturbance size, has a solution. At next order

(usually 0(5) but in fact O(5 _/3) in triple deck problems) we obtain a linearized inhomogeneous

form of the leading order problem. Due to the invariance of the problem under a translation

in tile x direction it is easy to see that the linearized homogeneous form of this system has a

non-trivial solution so that some solvability condition must be satisfied if the inhomogeneous

problem is to have a solution. This solvability condition is satisfied by introducing an expansion

of f_ in appropriate powers of 5. The solution of this problem then enables us to write down the

asymptotic form of (1.1) upto the second order. This procedure can be continued in principle

to any order and the coefficients in the expansion of f_ are found as solvability conditions at

each order. The evolution of a given wave system can then be found by the solution of the

calculated asymptotic approximation to (1.1). We find that (1.1) takes on a particularly simple

form if the wave system has fixed wavenumber and frequency at leading order. We shall in this

paper calculate (1.1) correct upto second order for both wavesystems governed by triple-deck

theory and those satisfying the two-dimensional Navier-Stokes equations. We can show that

at high Reynolds numbers (1.1) may then be reduced to the form

0A 0A 0 foe 0__)0-7 + a 0_ - b-_ (._ '/'_d'_" (1.2)

This is in effect the evolution equation for a wavepacket of large amplitude Tollmien-

Schlichting waves in a growing boundary layer.

At finite Reynolds numbers the modulation equation corresponding to (1.2) is

a_- + AA_ = +A_. (1.a)

Thus at finite Reynolds nunlbers Burgers equations controls the slow dynamics of a two-

dimensional wavesysteln. We will show that (1.2) and (1.3) can be generalized to allow for a



weakspanwisedependenceof the modulationand,surprisingly,it turnsout that thegeneral-
izationsin both casesareachievedby addinga term proportionalto M:< to both equations.

Here _"is a slow spanwise variable.

The procedure adopted in the rest of this paper is as follows: In §2 we derive the phase

equation for two-dimensional triple-deck problems. In §3 we describe the numerical work

required to determine the quantities appearing in the eqnation. In §4 we look at the special

case of ahnost uniform wavetrains and derive (1.2). In §5 we show how (1.2) can be derived

by a more conventional multiple scale approach directly from the triple-deck equations. The

phase equation approach for a boundary layer at finite Reynolds numbers is then discussed

in §6. The modulation equation (1.3) is derived in that section as a special case for ahnost

uniform wavetrains. Finally in §7 we draw some conclusions and give the generalized form of

the evolution equations which account for weak spanwise modulations and nonparallel effects.

2 Derivation of the phase equation for 2D triple deck prob-

lems

Our concern is with the structure of fully nonlinear solutions of the triple-deck equations gov-

erning the evolution of two-dimensional Tolhnien-Schlichting waves in incoml)ressil)le boundary

layers. Following the usual notation, e.g. Smith (1979a), the appropriate differential equations

in scaled form are
07/, 0'0

+ _- = 0, (2.1a)
0x ay

Ou Ou Ou _ Op 02u

o--i+ "_ + v-gy o_ + oT'

which must be solved subject to

(2.11))

u=v=0, y=0, (2.2a)

u _ y + A(x, t), y _ oc, (2.2b)

1/__o 0_A_ o_ d_ (2.2c)
P=_ oo(X-_) ""

The displacement function A and the pressure p depend only on x and t and if we wish to

consider other flows the pressure displacement law (2.2c) must be modified accordingly. Linear

Tolhnien-Schlichting waves correspond to perturbing u in the form

_t

(2.3)

with U small and, from Smith (1979a), the eigenrelation takes the form

AI (_o) = (i(_)1/3(_ Ai(@d,7.
0

(2.4)



where Ai is the Airy function and _0 - (i¢t)2/3. Solutions of (2.4) with f_ complex and ¢_

real show that neutral stability occurs for f/__ 2.298, a _ 1.001, and that F/i is positive for all

frequencies greater than the neutral value. In the high frequency limit it can be shown from

(2.4) that

= a + o(a-'/_) (2.5)

The above limit was discussed in detail by Smith and Buggraff (1985) who investigated the

possible nonlinear structures which emerge in that limit. The structures found by Smith and

Burggraf depend crucially on the fact that the right hand side of (2.5) is complex only at order

a-l/2 so that, even though a wave is never neutral, its growth can be balanced at higher order

by nonlinear effects. Here our interest is with the case a = 0(1),fl = 0(1), but we shall allow

for a slow evolution of the wavesystem as it moves through the boundary layer. The essential

details of our approach are to be found in Howard and Kopell (1977) who were concerned with

slowly varying waves in reaction diffusion systems. As a first step we introduce slow time and

space variables, T and X, by writing

T = _t, (2.6a)

X = St, (2.6b)

where _ is a small positive parameter. We shall investigate the evolution of a fully nonlinear

wavelike solution of (2.1)-(2.2), but allow the wavenumber and frequency to be slow functions

of X and T.

In order to describe such a structure we introduce a phase function O(x,t) such that the

wavenumber and frequency of the wave are defined by

O0 O0

= _, a _ - or (2.7)

The wavenumber and frequency must therefore satisfy

0e_ 0f_

o-7+ _ : o, (2.s)

and (2.8) therefore corresponds to the conservation of phase. Now we shall assume, following

Howard and Kopell (1977), that _ and f_ are functions only of X and T. In that case (2.8)

reduces to
0e_ Of_

0---T+ 0"X = 0. (2.9)

and it is then convenient to write to phase variable 6) = i_-10(X,T). The x and t derivatives

in (2.1)-(2.2)must then be transformed according to

0 0 0

Ox ---'°_-0-6+ '_O---X'

0 0 0

o_ _ -a-£6 + _o--_

(2.1oa)

(2.10b)



We seek a locally wavelike solution of (2.1)-(2.2) and impose periodicity in the phase variable

@. It remains now for us to find a small 3 solution of the full triple deck problem (2.1)-(2.2).

At first sight, in view of (2.10), we would expect to develop a solution of that system in terms

of (_. However, it turns out that for (_ << 1 the leading order approximation to (2.1)-(2.2) has

a mean term correction which depends on the slow variable X. This mean flow is reduced to

zero in an outer O(_i -1/3) boundary layer. The expansions must therefore proceed in powers

of/f 1/3 and we therefore write

_/ = Y_0+61/3_1 + ..., (2.11a)

u = uo(X,T,®,Y) + _1/3uI(X,T,O,Y) + ..., (2.11b)

v = vo(X,T,O,Y)+_U3vI(X,T,®,Y)+ ..., (2.11c)

p = po(X,T,O)+ _1/3p1(X,T,@)+..., (2.11d)

A = Ao(X,T,O)+ _U3A,(X,T,O)+.... (2.11e)

The leading order problem is then found to be

Ouo Ovo

_-_ + -fiy = o,

Ouo Ouo Ouo Opo

-a0b-y+_u0b--6+v0_- _-b--6+ --
u0=v0=0, y=0,

(2.12a)

Oq2U0

Oy 2 , (2.12b)

(2.12c)

Uo ". y+ Ao(X,®,T) y ---*oo, (2.12d)

OA
1 f_ _d¢

(2.12e)po= _ f-oo (6-_;)
Hence the leading order problem is obtained from the full two-dimensional problem by restrict-

ing attention to solutions in the form of traveling waves of local wavenumber a and frequency

_o- This specifies a nonlinear eigenvMue problem

_o = _o(a), (2.13)

which must be determined numerically. At this stage we assume that (2.13) and the corre-

sponding nonlinear eigenfunctions Uo, vo,po and Ao are known. We further note A0 may be

written in the form

Ao = A--o(X, T) + Ao(®, X, T) (2.14)

where Ao has zero mean with respect to O. It is necessary to reduce A--oto zero before the main

deck is encountered, therefore an outer boundary layer is required. Before we investigate the

outer boundary layer it is convenient to discuss the next order system in the y = 0(1) region.

The equations to be satisfied are
Oul Ovl

_-b--6+ 0-T= 0, (2.15a)

6



Oux _ Oul Ouo I Oul Ouo Opa 02ul

+ oo
OUO

- f_' 0---O-' (2.15b)

subject to

ul = vl = 0, y = 0, (2.15c)

an d

(2.15d)

In addition we require a condition involving ul at the edge of the boundary layer. On the basis

of (2.2b) we might expect that, ul _ A1, y _ oc, is the appropriate condition. However A1 is

essentially the displacement function in the main deck and ul is modified in the outer boundary

layer in which the mean flow correction on the slow scale is reduced to zero. Therefore we

must write down the condition

ul ---*D1, y ---*co, (2.16)

where D1 is to be found in terms of A1 by a consideration of the outer boundary layer. For

large values of y we have u ,,_ y so that the thickness of the outer layer is fixed by the balance

0 02

Yb OX "_ Oy 2"

Hence we write

7] = 61/3y

and now develop an asymptotic solution of (2.1)-(2.2) valid for 7] = 0(1). The solution here is

similar to that in the main deck for two-dimensionM triple-deck problems. We write

1
u

Here the terms in thefirst bracket of each expansion correspond to the mean flow. If we

substitute the above expansions into (2.1)-(2.2), and make the a_propriate changes of variables,

then we find that the function U0 is given by

Uo = /_0 + _l/3jt)l + t_l/3fixouM,i + "'"

where /tl is to be deternfined. The functions U M and V M are found to satisfy

02UM OU M

07]2 7]--_ - VM = O,

OU M OVM
+ -0,

OX O_



which are to be solved subject to

It M = ,40, V M = O, 1] = O, It M --, O, I] _ OCt.

The solution of the above problem for the mean flow correction is most easily obtained using

a Fourier transform with respect to X. We find that the function um is such that

(2.17)

If we now match the O(61/3 ) correction to the wavelike parts of tile expansion between the

y = 0(1), y = 0(61/3) regions we obtain

3_,4o /_ @ ds

whilst letting q _ oo in the definition of U1 gives

Ha = A1. (2.18)

This closes tile problem for tile order 61/3 problem in the lower layer.

(2.14), (2.15) and (2.16) we have

Thus in addition to

r 3 A° f2__ _0s d_

v, =A,+ x),. "
(2.19)

It should also be pointed out that tile condition that the mean flow correction ItM goes to zero

at infinity can be relaxed, if required for some A0, to the condition that UM tends to a constant

at infinity. This does not alter the condition (2.19). The quantity ftl is now deternfined as a

solvability condition on the inhomogeneous system specified by (2.15), (2.16) and (2.19). Such

a condition is required because of the translational invariance of the leading order wavesystem

With respect to O. Therefore a Solution of the homogeneous problem is found by setting
0

(ul, vl, pt, AI) = _-_(Uo, v0,P0, Ao). In order to find the appropriate solvability condition it

is convenient to define Z = (pl, vl,ul,ulv) T. We then must determine the condition that the

inhomogeneous system given below has a solution:

OZ

Oy

OZ

B Z + C-5-4

0 0

0 0

0 0

0

+ ftlF1,

0 0

0 0

0 1

?tOy _UO0 Vo



0 0 0

0 0 -a

0 0 0

a 0 O_uo-.Qo

0
,FI=

0

0

0

0

0

Uo(-)

subject to

ul :vl :0, y=O,

3½//o _l,r

j_" d%
u, -..41 + r_ (.__ _),/3 - Y_ _,

1 /_ '° 0-2-_A
Os

P_= grr _ 2-i_i"
Tile system adjoint to the homogeneons form of the above problem is

OJ _ DJ - C r OJ
Oy 00'

with

D

0 0 0 0

0 0 0 Uoy

0 0 0 0

0 0 1 vo

J = (M, N, S, T) T,

and subject to the conditions

M=T=0, y=0,

S _ 0, y ---, _c,

M--_Mo_(O),T-_To_y-2,y_ with T_- a2zr-I/fro_ (xM_ s)ds"

The condition that the protflem for (Ul,vl,pl,A1) has a solution is then found to be

j x o__d__aAo___e__fl_ = _'(_) (_ - x)_l_ '

with

(2.20)

ak_ fo2_ M_(O)podO

K(a)= fo2_foT_@_odOdy (2.21)

At this stage we can write down the phase conservation equation correct to order 51/a. We

obtain

Oa 0fl00a _1/30ftl
o_ + o--J0---_= -_ _ + °(6_/3)' (2.22)

and the expansion procedure given above can in principle be continued to any order. We

postpone a discussion of the implications of (2.22) until we have described the results of the

calculations required to determine (t, fl0, t21.



3 The numerical work

The system (2.12) is periodic in 0 so we seek a solution by expanding for example v0 in the

form
oo

Vo = _ Vom(y)e im° (3.1)
--(X)

After eliminating P0m and some linear terms proportional to Uom from the O momentum

equation, the equation to determine v0m may be written in the form

d4V0m
im {_Uoo -- fl} "ore = Rm, (3.2)

dy 4

where Rm is a nonlinear function of {uo,,_}, {Vo,,_}. The equation "for the mean part of u0 is

then written as

d2u00 dI (3.3)
dy 2 dy '

where I is a nonlinear function of {u0,_}, {Vo,_}. We used central differences to evaluate the

derivatives in (3.2), (3.3) and a solution of the resulting nonlinear system was found by iteration

after first restricting m to be less than say M. In our iterative technique the right hand sides

of (3.2) and (3.3) were evaluated at the previous level of iteration and one boundary condition

was replaced by

vlo(oc) = Co + ido

where co and do are prescribed real constants. After the iterations converged we then adjusted

c_and f_ until the previously ignored boundary condition was satisfied. Note here that, because

the solution of (2.12) is unique only upto a phase shift, the values of a and f_ obtained by this

procedure are functions only of {Co2 +dg} 1/2.

The grid size and the value of M were varied until converged results were obtained. In the

following discussion the results presented correspond to M = 32, and 200 grid points in the y

direction with "infinity" at y = 10. In Figures 1 and 2 we show the dependence of _ and f_0 on

the quantity V_0z + dg which is a measure of the disturbance size. We see that, as predicted by

Smith (1979b), finite amplitude motion begins as a supercritical bifurcation from Blasius flow.

In Figure 3 we plot f/o as a function of g. The calculations could not be continued beyond the

point F shown on the Figure ; we will return to this point later. We further notice that f/0 is a

multiple valued function of _ for a range of values of c_ and that ft_(c_) becomes infinite when

,,_ 1.0145. In Figure 4 we show the shear stress as a function of @ for a range values of rio.

The results shown in this picture suggest a reason why Figure 3 cannot be continued beyond

the point F. We see that as the point F is approached the shear stress approaches zero at a

point. In Figure 5 we show how the contribution to the shear stress from the different modes

varies as flo varies. We see that the the higher modes grow rapidly as F is approached. This

suggests that the shear stress becomes singular as F is approached.

10



Beyondthe point F ourcalculationsfailedto convergebecausetheprocedureusedto solve

(3.2)-(3.3)failed to drive the residualsbelowthe tolerancelevel, l0 -12,usedthroughoutour

work. A similar result wasfound by Conlisket al (1987)who solved(2.12)by an indirect
method. In their calculation the Tolhnien-Sclichting waves were first forced by a wall motion

and then their properties extrapolated as the forcing was reduced to zero. The results of

Conlisk et al (1987) have been plotted in Figure 3 and we see that, on the whole, there is

good agreement with our work when our program produced converged results. Some of the

larger amplitude results by Conlisk et al were obtained by reducing the tolerance level in

their iteration procedure. A similar reduction of the tolerance level in our code enables us to

continue Figure 3 for slightly larger disturbance amplitudes but we do not plot them for the

following reasons. Firstly we found that a reduction of the tolerance level made our results

very sensitive to the grid size. Secondly a reduction of the tolerance level at best only enabled

us to continue our calculation untl] a was reduced to about 1.018. Furthermore the results of

Figure 4 suggest to us that the curve of Figure 3 terminates at a point close to F where all

the harmonics are excited and a singularity has been encountered. Therefore it does not seem

sensible to plot results obtained by reducing the tolerance level further. Further calculations

were carried out at large frequencies in order to find finite amplitude solutions of the type

predicted by the Smith-Burggraf theory. Despite a careful search of the parameter regime

identified by Smith and Burggraf (1985) no solutions could be found, but this does not mean

that they do not exist.

The next calculation required concerned the constant _1 defined by (2.20). In order to

calculate _ from (2.20) it is necessary to compute the adjoint function J = (M, N, ,5',T). In

fact it is easier to solve the problem for (Ul, Vl, Pl, A1) directly and find the value of _1 which

enables all the required boundary conditions to be satisfied. It was easier to compute _1 in this

way because the system for (ul,vl,pl,A1) can be solved using essentially the same iteration

method as used above for the solution of (2.12). In Figure 6 we show the dependence of K on

the wavenumber c_. The fact that K is singular at c_ = a_ = 1.0145 is a direct consequence of

the fact that 9t'(c,_) = 0. In Figure 7 we show the dependence of/10 on a and we observe that

,40_ is respectively negative and positive on the lower and upper branches of Figure 3. Here

the upper and lower branches correspond to points on Figure 3 which are respectively above

or below E. The singularity in /t0_ is due to the fact that /]0 continues to decrease when

passes through a_. The fact that both K and/i0_ change sign at a_ means that viscous effects

have essentially the same destabilizing role on the upper and lower branches when uniform

wavetrains are considered; see the following section.

Now let us discuss the implications of our calculations for the evolution equation (2.22)

which we recall determines the wavenumber c_ correct upto order _i_. The term on the right

hand side of (2.22) is due to viscous effects and the results of Figures 6, 7 imply that viscous

ll



effectsaredestabilizing.The zerothorderapproximationto (2.22)yields

0c, 0_
0-T+ cogo--x= 0 (3.4)

where a;g is the group velocity. We see from Figure 3 that the group velocity is negative for

the upper branch and positive otherwise. This suggests that the upper branch solutiot]s are

physicMly irrelevant since their energy propagates upstream. In fact, the form of Figures 2,:1,

and the known result about the stability at small amplitude of Tollmien-Schlichting waves,

Smith (1979b), suggests that solutions corresponding to the upper and lower branches would

be found to be unstable and stable respectively if a Floquet analysis of them were carried out.

Suppose then that we consider the evolution of disturbances c6rresponding to the lower

branch of Figure 3. If at T = 0 we are given

= a(x)

then for T positive we have

= ct(X - oog(_)T)

which deternlines e_ implicitly since cog is a function of (t. It is well-known, eg Whitham

' the above solution will become multivalued after a finite time if the(1974), that for positive cog

initial data has a compressive part. This suggests that finite amplitude Tolhnien-Schlichting

waves will develop discontinuities in wavenumber and frequency as they propagate downstream.

When such shocklike structures develop (3.4) is no longer valid, and the viscous term must be

brought into play. We expect that the situation then is similar to that for Burgers equation,

see Whitham (1974), where viscous effects smooth out shocklike solutions but do not prevent

their development. However until a numerical treatment of (3.4) is carried out such remarks

should be treated as speculative. Now we shall concentrate on a case where more analytical

progress is possible and investigate nearly uniform wavetrains.

12



4 Uniform wavetrains and their stability

Suppose that (a0, flo(a0)) is some point on the curve shown in Figure 3. The corresponding

wave with

® = O(aoX- _0(a0)T)

corresponds to a constant frequency/wavenumber solution of the full 2D triple deck problem

for Tolhnien-Schlichting waves. The stability of this system can be readily investigated by use

of the phase equation (2.22). We first write a = ao + A, where A is small, and then (2.22)

becomes

_A ! oqA tl GOA c_Ao c_ [ Y aA
- _ d_

+ rZo(_o)_-Z + r_o(,_o)/,,5-Y <9/ZK(_o)5-__JooSX (__ X)llZ "

+O(51/3A 2, A3).

Note that K/lo_ is negative on both the lower and upper branches respectively of Figure 3.

We can eliminate the term proportional _(ao) by an appropriate Galilean transformation.

If we then take T = 0(5-1/3), A ,,_ _51/3 with X = 0(1) then, in the limit 5 --+ 0, a suitably

rescaled version of the above equation is

0A A0A 0_f_ °° an
ds.

+ 57 - (,--_),13 (4.1)

Therefore the longwave instability of a uniform wavetrain of ToUmien-Schlichting waves is

governed by the apparently new evolution equation (4.1).

Suppose now that at r = 0 there exists a small initial perturbation A = Ao({). The

linearized form of (4.1) shows that A evolves according to

A = _ oo A;(k) exp ik_ + r(2/a)(ik)2/a dk,

where A_ is the transform of the initial data and

(ik)-2/3 = I e-_i/ak-2/3' k > O,

[ e'_i/alkl-2/3 , k < O.

It can be seen that the ultimate form of the disturbance depends on A_(k). More precisely

we see that when A0(_) is sufficiently concentrated the solution will develop a singularity

at a finite time. Thus for example an initial disturbance of Gaussian form will have A_ -,,

exp(-k 2) and a bounded solution will occur for all time. However if A_ ,,_ exp Ikl 4/3 the

solution will become unbounded after a finite time. This is an important result because it says

that a constant wavenumber/frequency solution of the two-dimensional triple-deck problem for

13



Tollmien-Schlichtingwavesisalwaysunstableto alongwaveinstability. This isnot uncommon
in physicalproblems,eg the Stokeswaterwave,nonlinearoptics. For a discussionof such

modulationalinstabilitiesthe readeris referredto Whitham(1974).
A possiblestructurefor A whenthis singularityis encounteredis obtainedby writing

A -- (V- r)_(¢), ¢ -
r]3/4

where the singularity occurs when 7 ---*T_ and is localized around _ = _. The constant A will

depend on the initial conditions, but we expect that only solutions with A >_ 0 will l)e possible.

The function • is then found to satisfy

- Ak0 + 3¢ dq _ d f¢_o qj,(_) (4.2)4 de de (8- 0) 1/3d0"

We seek a continuous solution of (4.2) with ko = _0, a constant, for ¢ > 0 and allow 02 to grow

algebraically when ¢ _ -co. It is then convenient to write cr = -¢ and let

02(¢) = _(-a)= _o {f(cr)+ 1}

so that f(cr) satisfies

A{f(a)+l}- if(a)= _ (ff-_i)l_3' -oc <a< oo,

and then f(a) = O, a <_ 0, whilst for 0r positive f is determined by

# {/(a) - 1 - all(or)} - 4 d fo¢
f'(t)dt

(4.3)
3 da (a - 0 1/3"

When # = 4A/3 = 4/3 this equation has an exact solution proportional to a 4/3. If this solution

is written in terms of the original variables we obtain

_o, ¢>0,
_2 -- (4.4)

9..._3a, / ./-A4/3
_0+ s_ _0_-9') , ¢<0,

For other values of # we can find a solution of (4.3) by taking a Laplace transform. After some

calculation we find that f(cr) may then be written in the form

= ap, (4.5)

where

FI(p) = p"+l e-r(2/3)p_/a, Q(p) = q"-l e-r(2/3)q_/a dq.

It is then easy to show from (4.5) that when _r --. _c

f(cr) _ c#'.

14



Thusin termsof theoriginalvariablesweobtain

~ ¢

which incidentally confirms the exact solution (4.4). Thus we have constructed solutions of
d_

(4.2) for which _ is singular with 0 < )_ < 3/4 whilst the solution for )_ = 0 corresponds to

a finite jump in @ between ¢ = +oc so that the wavenumber perturbation (and therefore the

associated velocity displacement function) has a shock structure.

In the absence of a flfll numerical investigation of the evolution equation (4.1) we cannot

say which of the singular solutions will be excited. Indeed nothing in our discussion so far

has ruled out the possibility of finite amplitude equilibrium solutions of (4.1). However, if we

multiply (4.1) by X and integrate from ( = -oc to ( = +oc, and use Plancherets formula to

simplify the contribution fi'om the right hand side of (4.I), we obtain

d f__ X2(_,r)d _ v_ fo °°d--r oo = --_ rU3lX*(r, r)12dr (4.6)

where X* is the Fourier transform of X. It follows from (4.6) that equilibrium solutions

(constant or in the form of traveling waves) are ruled out.

Breakdown of the full nonlinear problem

Now let us consider a possible breakdown form for the full nonlinear system (4.1). If the

breakdown is governed by the inviscid form of the equation then, following Brotherton-Ratcliffo

and Smith (1987), we can, after a suitable shift of origin, write

A = lrl'_-_Qo(,i) +...

with 71- irl, _. The term on the right hand side of (4.1) is then negligible for n < 3/4 and Q0

is then given implicitly by

'1 = -Qo - eoQ 3, (4.7)

with e0 a positive constant. However (4.7) only determines Q0 as a single-valued function of q
L

when n - L - 1' L = 3, 5, 7,--- so that this type of structure is not possible. However we can

take n = 3/4 in which case Qo satisfies

3 , o OQot -_'lQo + + QoQ'o : -0,---11 _ "

The above integral equation must then be solved nmnerically. We postpone that numerical

investigation until we have carried out NIl numerical simulations of (4.1); such an investigation

will be reported on in due course.
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5 A direct evaluation of the wavenumber modulation equa-

tion

We shall now use a multiple scale approach to derive (4.1) directly from the two-dimensional

triple deck equations (2.1). Again the major effect of the modulation is to introduce a layer
w

of depth 5 -1/3 sitting on top of the lower deck. We again define slow variables X and T by

writing

X = (_x, (5.1a)

T = St. (5.1]))

It is then convenient to define X, ]Y by

= X - wgT, (5.2a)

= 61�aT, (5.2b)

where Wg is a group velocity to be determined at higher order in our expansion procedure.

Suppose then that we seek a solution of the triple-deck equations which is periodic in ¢ =

ax - fit where a and f_ are now taken to be constant. In the lower deck we expand u in the

form

u : E °_n_5'ffaBn(f('_) 0¢"
7_----0

+

+ _513u_(¢,y, 2, i_)+... (5.3)

together with similar expansions for v and p. We note at this stage that the sunnnation term

in (5.3) arises because of the translational invariance of a solution of the two-dimensional

triple-(leek equations. In addition we note that the first correction to the underlying mean
X

state dependent on X arises at 0((5 4/3) in (5.3). It should also be stressed at this stage [hat

uo, the 0(1) term in (5.3), is independent of the slow scales 2 and T and that B(X,T)is an

lla Ouo
amplitude function to be determined. Thus in (5.3) we identify the term (5 ' B--a-7 as a small

OUo

amplitude perturbation to the periodic flow u0(¢, y). The eigenfunction -_ occurs because
of the translational invariance of any C-periodic solution of tile triple deck problem. For our

purposes here it is sufficient for us to consider the partial differential equations to deternfine

(U4, v4, P4 ) and (us,vs,ps). If the expansions for u,v,p are substituted into the triple deck

equations, and tile appropriate change of variables made, then we find that (u4, v4,P4) satisfies

02U4

Oy 2

OU4 OV4

a---_+ Oy

Op4 Ou4 Ouo Ouo Ou4

- - Sy vooy

- B 2 Uo¢, (5.4a)

- [-%uo + c_uou0_]Bx. (5.41))
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Theseequationsmustbesolvedsubjectto u4 = v4 = 0, y = 0 whilst for large y the appropriate

conditions are

u4 _/7,(¢, X, T), (5.5a)

with

1 i_ '° o_i ds (5.6a)

Since the homogeneous form of the system for (u4, v4,P4) has the solution (u4, v4,P4) =

J_(Uo, vo, Po) it follows that solution exists only if condition is satisfied.orthogonalitya an

This may be written down following the procedure used in §4, it is sufficient here to note that

the condition determines the group velocity wg and that the expansion obtained is identical to

that which it was derived in §3 after making a perturbation in the wavenumber. The solution

of (5.4) is clearly of the form

v4,p4) : B,(U4, U4,P4),,4 = B, i,

where (//4, V4,/"4) and 5, are independent of Jl', T. The other main feature to appreciate about

the solution of the 0(_ 4/3) problem is that at the edge of the y = 0(1) region U4 may be

expressed in the form

U4 "0 ft = (AM + AF(¢))B 2

where AM is independent of ¢ and therefore corresponds to a mean flow correction. The

reduction to zero of AM is achieved in the outer O((_ -1/3) region in a similar manner to that

found in §3. We define the variable 7/by

= _l/3y

and in the outer (_-1/3 layer u is expanded in the form

oo '_n ,¢/,

e,13 ' ' ' 0¢,, "_'_o) + _413UM(2,?#) + _Ts13US+''"
"it-

where UM is the mean flow correction driven by AM. The mean flow correction in the 71

direction is ,52VM and the linear problem to determine (U-M, VM) is found to be

OUM OVM
+ -0,

02 @

cO2UM OqUM
---VM =0,

07/2 7j 0)?

UM = AMB2,VM=0,71=O

UM --* 0 , 77--_ ec .

(5.7)

The systein (5.7) is identical to that obtained in Section 2 and therefore may be solved again

using a Fourier Transform technique, the solution is not repeated here. The mean flow at order
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64/3theninteractswith the0(6 0) flow to produce an 0(6 5/3 ) correction to the outer boundary

condition for the disturbed flow in the y = 0(1) layer. Again the analysis follows closely that

of §2 so we do not repeat it here, we find that (u5,vs,ps) must satisfy

Ou5 _,45+_ 0 _ _(s,T) d_- (.._ "'

where _ is a constant. In the y = 0(1) region (us, vs,ps) is found to satisfy (5.4a,b)but with

the right hand sides of these equations replaced by [.], and

{ 0"_0 OU4 OUO OU4 }[-1+ B_uo¢> + BB 2 v4-_ + Uo--_ + v40-----y+ VO_y +""

respectively. Here [.] denotes terms which don't contribute to the solvability condition which

the system for (us, v5, P5) nmst satisfy. The required condition is

iX" F(S' T) ,
OB B OB A O: _ a_ ^

+ 9, -= = (s-OT OX OX

where gl, _ are constants and a suitable change of variables enables us to recover (4.1). Thus

I" in (4.1) can be interpreted as being either a wavenumber or amplitude perturbation and the

two approaches are shown to be consistent.

6 The phase equation approach at finite Reynolds numbers

In §2 we derived the phase equation for Tollmien-Schlichting waves in a Blasius boundary layer.

Such a boundary layer exists only at asymptotically large values of the Reynolds number and

it was therefore appropriate to utilize the largeness of the Reynolds numbers in the description

of the instability wave. However linear descriptions of the evolution of Tolhnien-Schlichting

waves at finite Reynolds numbers have been given by for example Gaster (1974). Though such

approaches do not give formal asymptotic approximations to the equations of motion it appears

that they correctly predict the essential physics of the linear growth of Tolhnien-Schlichting

waves. Similarly large scale numericM simulations of nonlinear growth of Tolhnien-Schlichting

waves at finite Reynolds numbers have proved equally successful at reproducing experimental

results, e.g Wray and Hussaini (1984). Here we wish to investigate the phase equation approach

at finite Reynolds numbers but, in order to keep our asymptotic analysis formally correct, we

choose to work with a parallel boundary layer which is an exact solution of the Navier-Stokes

equations at all Reynolds numbers. We refer to the asymptotic suction l)oundary layer which

has been investigated in the weakly nonlinear regime by Hocking (1975). Suppose then that
V

the freestream speed is U0 and the suction velocity is TVo.We define a reference length L - v0
and define the Reynolds number

u0
R-

v0

8



but we assume that R = 0(1) in this section. Since we restrict ourselves to two-dimensional

disturbances it is convenient for us to define a stream function ¢ and work with the vorticity

equation in the form

0V2¢ O(V2_,, ¢) _1V4_/' ,
0---[-- + O(x, y) -

(6.1)

which is to be solved subject to

Cy=0, Cx= 1, y--0, (6.2a)

_#y _ 1, y-_oc

In the absence of an instability the stream fimction _/, is given by

(6.2b)

¢ = Co(y) = y + e-y - x. (6.3)

This flow is unstable to two-dimensional Tolhnien-Schlichting waves for R > 54370.0 and the

band of unstable wavenumbers tends to zero when R ---* oc. Here we assume R is 0(1) and

assume that an 0(1) amplitude wavesystem is superimposed on (6.3). At finite R the mean flow

driven by the wave system is confined to the boundary layer. Therefore no outer adjustment

layer is required even when the wavesystem evolves slowly in the downstream direction, see

Hocking (1975) for a discussion of this point. Suppose that X, T are defined by

X:6x, T:(_t,

then we define

and expand n in the form

0--= _O(X,T), ft = OX, _l =--OT,

n -_ n O nl- 5n 1 + ...,

We seek a solution of (6.1) by writing

(6.4)

¢ = ¢0(x,u, O,T) + _g,,(X, u, O,V) _--..

and the leading problem is determined by solving

__+ceO,V,%,¢o ][2 __ lv_/,o,
o(o,y) R

¢ou = O, _¢oo = 1, y = O,

_/)Oy""* 1, y ---*oc ,

with
0 2 0 2

V 2 _ __ + a 2
Oy'2 O0 2 '

(6.5)
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and periodicity in O. The requiredfrequencyand wavenumber,flo and c_, must be found

numerically once some measure of the disturbance size is specified. We will not attempt such

a calculation here but we note from the finite Reynolds number calculation of Hocking (1975)

and the large Reynolds nmnber theory of Snfith (1979a,b) that both sub and supercritical

bifurcations to finite amplitude Tollmien-Schlichting waves are possible. For the purposes of

our discussion we simply assume that the nonlinear eigenrelation _o = gl0(a, R) is known. At

order (f we find that ¢1 is (letermined by

R 0V_¢o as- ao ov_,loo 0(¢o,v_¢,)o(o,y) _ o(v,,,V_¢O)o(o,y) v_v,, = _,--+oo _M(O , x,y). (6.6)

where

M - 0(¢o, v_f,o) + _2 O(f,o, 2°--h_-_ 4_ O:o_,oeJ + V_¢o.
o(_,y) o(o,y) R a,_oo

The system must be solved subject to periodicity in O whilst the boundary conditions in y

are
0¢1

- -0, y=0
¢_ Oy

g-'l _ q(X), y --+ oo.

Here q(X) represents a mean flow normal to the wall at infinity.

(6.7a)

(6.7b)

This flow is essentially

driven through the equation of continuity by the O(1) streamwise velocity component. A solv-

ability condition is required if (6.6)-(6.7) is to have a solution since the translational invariance

_ 0_/____0is a solution of the homogeneous form of (6.6)-(6.7). It is worth
of (6.5) means that _/)1 -- 0(_)

pointing out at this stage that, if we were performing a calculation in a region of finite depth,

then a pressure eigenfunction would have to be allowed for at leading order in order that q

should be reduced to zero. The requirement for such an eigenfunction is well-known in weakly

nonlinear stability theory; see for example Davey, Hocking and Stewartson (1974) or DiPrima

and Stuart (1975). The solvability condition can be found by writing

in which case the homogeneous form of (6.6) is

ao_AZ+,ff--_BZ+C_=O,

where A, B and C are 6 x 6 matrices defined by

A

1 0

0 0

0 1

0 0

0 0

0 0

0000

0000

000 0

0 l 00

0000

0010
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0 0 0 0

1 0 0 0
0 0 1 0

B=
0 0 0 0

0 0 0 1

0 0 0 0

C __

0 -1 0

0 0 -1

0 0 0

0 0 0

0 0 0

0 -RV_¢oy aRV_/,0o

The system adjoint to that given above is

0 0

0 0

0 0

0 0

0 0

0 1

0 0 0

0 0 0

-1 0 0

0 -1 0

0 0 -1

0 R[a¢o_-fl] -R_¢oo

- a J--_ATQ - ff'_BTQ

together with conditions of periodicity in 0 and

+CTQ = 0,

q5 = q6, Y = 0, oo.

The condition that (6.6)-(6.7) has a solution then becomes

0a

_1 = --_-_fl,

with
2rt

fl = f°-a- fg,o M(O, X, y)qadOdy
2*r

0V_V,0 ..-,.fj fo -- q6a ,ay

The phase condition fix + aT = 0 correct upto 0(6) becomes

0

aT + C_'Xa0(c_) = _" {aX" fl(a)} (5.

In order to examine the stability of a uniform wavestream solution we write

a=ao+A

with A << a6, and (6.11) after a suitable change of scales becomes

A_ + AA_ = +A_.

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

Thus we obtain the surprising result that the modulational instability of a two-dimensional

wavesystem in a 1)oundary layer at finite Reynolds nulnbers is governed by Burgers equation.
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In (6.12)the± signscorrespondto thecaseswhendiffusioneffectsarestabilizing/destabilizing
respectively.Without calculating_1wedonot knowwhichsignis appropriatefor theproblem
underconsiderationheresowewill discussboth possibilities.Howeverwecansimply quote

the knownresultsaboutBurgersequationfor eachcaseand theimplicationsfor the stability
of a uniform wavetrainareessentiallythesame.A full discussionof resultsquotedbelowcan

be found in Whitham(1974)and HowardandKopell (1977).
If thepositivesignis takenthesolutionremainsboundedfor all time andindeedlocalized

or periodicsolutionof (6.12)tend to zerowhenT increases. However even in the diffusively

stable case weak shock solutions of (6.12) can develop; a discussion of this possibility is given

by Whitham (1974), Howard and Kopell (1977). Thus for any gi_,en uniform wavetrain whose

instability is governed by (6.12) with the positive sign, an initial disturbance can be found

which does not decay to zero at large times. The uniform wavetrain is therefore modulationally

unstable.

If the negative sign is taken in (6.12) viscous effects are destabilizing and in fact finite time

singularities are developed from a broad range of initial conditions. Again it follows that the

uniform wavetrain is unstable.

We conclude that at finite Reynolds numbers modulational effects will either cause a finite

time singularity to develop if viscous effects are destabilizing, or cause shock discontinuities

in wavenumber and frequency in the stable case. In either case uniform wavetrains of two-

dimensional Tolhnien-Sclichting waves at finite amplitude should not be observed according to

our theory.

7 Conclusion

We have used a phase equation approach to determine the evolution of Tolhnien-Schlichting

waves at large and fnite Reynolds numbers. In the high Reynolds number case we found that

finite amplitude disturbances, periodic in time and space, apparently exist only for a small

range of values of the wavenumber a. The upper branch in Figure 3 describes modes with

negative group velocity and so they are therefore of no physical interest. The lower branch on

the other hand corresponds to waves with positive group velocity and for these modes the rate

of change of the group velocity with a is positive. This means that (2.22), the leading order

approximation to the phase equation, will develop discontinuities after a finite time for many

initial disturbances. It might be anticipated that viscous effects, which appear on the right

hand side of (2.22), might smooth out such discontinuities. We cannot be sure if that is the

case until a numerical investigation of (2.22) is carried out. However, in §4 we investigated the

particular case of uniform wavetrains and found that there viscous effects were destabilizing

and it seems likely that this is also the case for (2.22). In §4 we saw that the tinearized form
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of (4.1)leadsto a finite time singularityof the typefoundby Brotherton-RatcliffeandSmith

(1987).For thefull nonlinearproblem(4.6)showsthat equilibriumsolutionsarenot possible
andthat aninitial perturbationcannotdecayto zeroat largetimes.In effectthis meansthat

periodicsolutionsof the triple-deckequationsaremodulationallyunstable.A possibleformfor
thestructureof a singularsolutionof thebreakdownof the nonlinearformof (4.1)wasfound.

Thestructurefoundwasagainbasedonthestructurefoundby Brotherton-RatcliffeandSmith

(1987).Thevalidity of the structuremustremainopenuntil a full numericalinvestigationof
(4.1)hasbeencarriedout. The questionof howthe Navier-Stokesequationsalter their large

Reynoldsnumberstructurein orderto removethesingularitiesof (4.1)alsoremainsopen.
At finite Reynoldsnumberswefoundthat the evolutionequationfor a periodicwavetrain

satisfiesBurgersequation.Without extensivecalculationswecannotsaywhethertheviscous

termin (6.12)haspositiveaor negativesign.If it turnsout to benegativethenviscouseffects
areagaindestabilizingandfinite timesingularitieswill occur.If thesignispositivethenviscous

effectsarestabifizing. However(6.12)canbesolvedexactlyby the Cole-Hopftransformation

andit is known,Whitham(1974),that evenin the stablecaseshockswill in generaldevelop.
Thusweconcludethat at largeor finite Reynoldsnumbersa uniform wavtrainof Tolhnien-

Schlichtingwaveswill breakdownwith a singularityor shockdevelopingafter a finite time.
This castssomedoubton the validityof large-scalesimulationsof Tolhnien-Schlichtingwaves

usingFourierseriesexpansionsin the streamwisedirection.
In view of the fact that our anMysishasbeenrestrictedto the two-dimensionalcaseit

is possiblethat three-dimensionaleffectsmightpreventthe abovepredictionsfrom occurring
in practice. Nevertheless,experimentalobservationswherethe Tolhnien-Schlichtingwaveis

drivenbya wavemakersuggestthat thefirst stepin the transitionprocessis the lineargrowth
of two-dimensionalTolhnien-Schlichtingwavesfollowedby nonlinearsaturationand three-
dimensionaleffectscominginto play,seefor exampleKlebanoffet al (1962).

As a first steptowardslookingat the effectof three-dimensionalitylet us determinehow

theevolutionequations(4.1),(6.12)aremodifiedif a weakspanwisedependenceof thewave
is allowedfor. We shalldeterminethe modificationsusingthe multiple-scaleapproachof §5
rather than modify the phaseequationformulation.Since§5concernedTolhnien-Schlichting

wavesat largeReynoldsnumberlet us give the essentialdetailsof how the corresponding

expansionprocedureis formulatedat finite Reynoldsnumbers.In the absenceof spanwise
modulationthe streamwisevelocitycomponentis written in the form

o_ O'_u°(¢' Y) X,T) + 63u3(_b, )(,T) + (7.1)u = 0¢" + y' Y' "'"
?_0

Here :( = 5(x -wgt) is a slow variable obtained by moving to a coordinate system moving

downstream with the group velocity and ¢ = tax- riot. The summation term arises because of
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the translationalinvarianceof a periodicsolutionin thestreamwisedirection.At order 52 the

group velocity is determined as a solvability condition and u2 will be proportional to A 2. At

order 53 terms proportional to AA 2 and a slow time derivative of A will be generated. Viscous

effects also come into play to generate terms proportional to A22 and the required solvability

condition leads us to (6.12). In the presence of spanwise modulations the procedure described

above is modified in the following way. Firstly we define a slow variable

_=_z

where z is the spanwise variable and allow the amplitude function A to depend on (. The above

expansion for ,u remains unchanged but the 0(5) term in the corresponding pressure expansion

drives a spanwise flow of order 5'2 proportional to A(. This spanwise velocity component then

generates a term proportional to A(( in the 0(53 ) continuity equation. Similar terms are

generated by spanwise diffusion in the z,y momentum equations. The solvability condition

then is modified to give

A_ + AA_ = +A_ + A_Ac(. (7.2)

Here A1 is a constant whose sign cannot be calculated without solving the O(1) problem

numerically. A similar analysis for the triple-deck case gives

OA

OA A OA 0 foe 0--7 ds (7.3)o-7+ ' - +

with A2 a constant as the required generalization of (4.1). As a starting point to study the role

of three-dimensional effects in the two-dimensional breakdown structure we plan to carry out

numericM simulations of (7.2), (7.3).

Finally we close with a brief outline of how (2.22), (4.l) are modified by nonparallel flow

effects. Within the framework of (2.1) nonparallel effects manifest themselves through the

pressure displacement law Which allows for elliptic effects in the streamwise direction. However

the slow spatial evolution of the unperturbed shear flow does not enter (2.1) since it can be

scaled- out of the problem. For the weakly nonlinear growth of Tolhnien-Schlichting waves

Hall and Smith (1984) showed that nonparallel effects are important when the disturbance

amplitude is O(R -T/'3'2) and lead to an amplitude equation of the form

dC XC (1 + iN)clcI '2, (7.4)
dX

with _ a real constant. Thus nonparallel effects lead to the term XC in (7.4) thereby causing

the increased linear exponential growth of a small disturbance as it evolves in X. Any small

disturbance amplifying by this means eventually becomes nonlinear and for large X has ICI '2

X. Let us now show how related terms can be incorporated into (2.22) and (4.1).
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Wenote that (2.11a)proceedsin powersof 53 and that the Reynolds munber has been

effectively scaled out of tile problem by our assumption that the Tolhnien-Schlichting wavesys-

tern is described by the trit)le-deck system (2.1).This assumption means that the analysis given

so far in this paper is formally valid for (5large compared to any positive power of e = R-_. In

order to reveal the effect of t)oundary layer growth we now relax this condition and see which

new terms now play a role in (2.11a). Clearly (2.11a) must include terms proportional to

powers of _ because of the higher order terms in the triple deck expansion but in addition there

will be a term proportional to ca(5-1 X obtained by expanding the streamwise dependence of

the unperturbed flow in a Taylor series in the streamwise direction. We therefore now expand

the frequency in the form

---- _0 + (51/3_I + 6_'-_2 + (-2_'_3 + (a(5-1X_'-_4 '_ 0@3, _6(5-2, _). (7.5)

The ordering of the terms in the above expansion depends on the relationship between (5and e.

The term proportional to f_4 is the first one dependent on the nonparallel nature of the basic

flow. The first significant distinguished linfit arises when (5 ,-_ ¢ when the terms proportional to

_'_3, _"_4 })ecome comparable but still small compared to the 0((5_) term. The next significant

stage is when (5 decreases to e_ in which case the nonparallel term and the 0((5_) term are

comparable. However the crucial stage arises when (5 decreases to e} in which case the terms

proportional to ftl, _t4 play an equal role and viscous and nonparallel effects are comparable.

Thus if we write
4

(:3 = hl(5_,

with hi an O(1) constant then (2.2), correct to second order, now gives

0_ Of_0 0(_ (5,/_.0_, Of_4
0_ + OOC_ ()X -- - ' (_ -_- hi _'_4 + hi X _)_-...) (7.6)

A further decrease in the size of 6 means that the term proportional to fll should be dropped

and nonparallel effects dominate the right hand side of the equation for c_. This completes our

description of how the phase equation changes its structure _hen (5 is decreased. Note here

that when we decrease (5we are in effect moving further away from the initial location x* = 2*

so the above different orderings of the right hand sides of (7.5) correspond to moving further

downstream. Thus the final form has the right hand side of the phase equation dominated by

nonparallel effects.

A similar procedure can be used to determine the appropriate modifications to (4.1) which

is the evolution equation for the perturbed wavenumber of an initially uniform wavetrain. Here

the crucial scaling brings in nonparallel effects at the same stage as the integral term driven

by viscous terms. The appropriate scaling now has

(3(5-_ ---- h. 2
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with h2 an 0(1) constant. Equation (4.1) then becomes

OA 0t, -- _ ds + h4. (7.7)

Here h3, h4 are constants proportional to h2, and h4 can be set equal to zero by a change of

dependent variable. Therefore the nonparallel modulational equation for Tollmien-Schlichting

waves in a growing boundary layer is (7.6) with h4 = 0, the numerical solution of that equation

will be reported on in due course.
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FIGURES

Figure 1Thedependenceof a on _ + d_.

Figure 2 The dependence of n0 on V/_02+ d_).

Figure 3 The dependence of n0 on c_. The symbols denote the results of Conlisk eta].

Figure 4 The shear stress as a function of 0 for flo = 2.2995,2.3041,2.3125,2.3245,2.3398,

2.3575, 2.3763, 2.395, 2.4124, 2.4275

Figure 5 The shear stress u_),,_(0) as a function of flo for the first sixteeen modes.

Figure 6 The dependence of K on c_.

Figure 7 The dependence of fi.0 on a.
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Figure 1 The dependence of a on _o + d_.
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Figure 3 The dependence of _0 on a. The symbols denote the results of Conlisk et al.
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Figure 4 The shear stress as a function of ® for flo = 2.2995,2.3041,2.3125,2.3245,2.3398,
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Figure 5 The shear stress u_m(0 ) as a function of f_o for the first sixteeen modes.

33



5

0

-5

-t0

-15

I

1.004 1.008 1.012
O_
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